skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Naderi-Afooshteh, Abbas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Malware written in dynamic languages such as PHP routinely employ anti-analysis techniques such as obfuscation schemes and evasive tricks to avoid detection. On top of that, attackers use automated malware creation tools to create numerous variants with little to no manual effort. This paper presents a system called Cubismo to solve this pressing problem. It processes potentially malicious files and decloaks their obfuscations, exposing the hidden malicious code into multiple files. The resulting files can be scanned by existing malware detection tools, leading to a much higher chance of detection. Cubismo achieves improved detection by exploring all executable statements of a suspect program counterfactually to see through complicated polymorphism, metamorphism and, obfuscation techniques and expose any malware. Our evaluation on a real-world data set collected from a commercial web hosting company shows that Cubismo is highly effective in dissecting sophisticated metamorphic malware with multiple layers of obfuscation. In particular, it enables VirusTotal to detect 53 out of 56 zero-day malware samples in the wild, which were previously undetectable. 
    more » « less
  2. This paper presents MalMax, a novel system to detect server-side malware that routinely employ sophisticated polymorphic evasive runtime code generation techniques. When MalMax encounters an execution point that presents multiple possible execution paths (e.g., via predicates and/or dynamic code), it explores these paths through counterfactual execution of code sandboxed within an isolated execution environment. Furthermore, a unique feature of MalMax is its cooperative isolated execution model in which unresolved artifacts (e.g., variables, functions, and classes) within one execution context can be concretized using values from other execution contexts. Such cooperation dramatically amplifies the reach of counterfactual execution. As an example, for Wordpress, cooperation results in 63% additional code coverage. The combination of counterfactual execution and cooperative isolated execution enables MalMax to accurately and effectively identify malicious behavior. Using a large (1 terabyte) real-world dataset of PHP web applications collected from a commercial web hosting company, we performed an extensive evaluation of MalMax. We evaluated the effectiveness of MalMax by comparing its ability to detect malware against VirusTotal, a malware detector that aggregates many diverse scanners. Our evaluation results show that MalMax is highly effective in exposing malicious behavior in complicated polymorphic malware. MalMax was also able to identify 1,485 malware samples that are not detected by any existing state-of-the-art tool, even after 7 months in the wild. 
    more » « less